Wednesday, August 14, 2013

Re: 相对性原理应该继续贯彻下去!

等效原理的理解

已有 1 次阅读 2013-8-14 23:05 |系统分类:科研笔记    推荐到群组

引用Synge书中的一段话(译文):“我从未懂过这一原理...它意味着引力场的效应与一个观者的加速度的效应不可分辨吗?如果是这样,那是错的。在爱因斯坦理论中,要么存在一个引力场,要么不存在,取决于黎曼张量是否为零,这是一个绝对的性质,与任何观者的世界线都毫无关系。时空要么平直,要么弯曲,在本书的若干地方我都不得不煞费苦心的把由时空曲率导致的真实引力效应与那些由观者世界线弯曲导致的效应区分开来。等效原理在广义相对论的诞生过程中确实起到过接生婆的作用......我建议我们以适当的荣誉埋葬掉这位接生婆而正视绝对时空这一事实。”

这一段引文,对等效原理的地位的评述可能有点偏激,但是却说的很在理。其实这样的例子还有,比如当年的“Dirac Sea”,以及相对论量子力学等等,它们在相对论性量子场论建立的时候,确实起到过启发性的作用,然而当相对论性量子场论诞生以后,那么它们也就成了历史的珍玩。等效原理与此类似,它当时确实启发了Einstein建立了广义相对论,然而广义相对论诞生以后,并不在需要这个“踏板”了...所以从这个意义上来说,我们可以以“适当的荣誉埋葬掉这位接生婆”。

最后还要说一点,等效原理的地位在广义相对论中是不必须的,甚至有点鸡肋,但是它的地位也不是像Synge说的那样一文不值,Synge当时并没有想到,今天的等效原理是作为检验一门引力理论是不是合格的理论的标尺。也就是说,一门引力理论如果是合格的引力理论,那么它必须满足之前说到的等效原理的三个层次,否则就不是一门好的引力理论。目前为止,能够满足WEP和EEP的引力理论,除了相对论以外还有几种,然而同时满足WEP、EEP和SEP的引力理论,暂时还是只有Einstein的广义相对论。


以上大致是很多人的观点,


很多人抛弃等效原理,实际上还是由物质导致的真引力  和   由观察者非惯性运动的假引力  认为两种不等价


我认为其实关键在于自由与否


等效原理

引力就纯粹和惯性力等价?
关键引力被认为是真实物质造成的,而惯性力被认为是假的
这里问题是,什么样的东西能导致惯性力???
关键是自由与否,如果是自由观察者,他的惯性力,必然来源于物质导致的时空分布,这种必然就是引力

不自由的,那就当然不等价,


由于存在非引力之外的力,使得什么样的非惯性力都成为可能,当然和真正自由运动那种不等价


所以,在一个完备的理论中,彻底统一一切力,消除一切力,几何化一切力,彻底没有力,不存在非自由的运动,一切运动都应该自由


那时候,再理解等效原理,就毫无障碍了



在 2013年8月14日下午10:45,王雄 <wangxiong8686@gmail.com>写道:
1 广义相对性原理到底有木有约束力
一切物理规律在一切参考系中有相同的形式,这么说是否有实质约束力?
有人说牛顿引力都可以通过一些平凡的改造使得在一切参考系中都是一样的形式,  
有些书比较可操作的处理是,一切物理规律的表述中,只有度规及其衍生的量才能出现在时空背景当中
实际上,就是说物理规律是几何的,不依赖于人为选取的坐标系

再深究一下,哪些东西可以出现在物理规律中?
基本常数?必须是普适的不变的,而不依赖于任何人为的东西,这里面很有趣,光速的存在是为了联系时间和空间,如果光速无穷大,则时间和空间是割裂的,光速是一个有限值,则时间和空间可以联系到一起

基本物理量?张量?这个完全决定于变换群,决定于几何

然后是时空,就是度规?

2  等效原理
引力就纯粹和惯性力等价?
关键引力被认为是真实物质造成的,而惯性力被认为是假的
这里问题是,什么样的东西能导致惯性力???
关键是自由与否,如果是自由观察者,他的惯性力,必然来源于物质导致的时空分布,这种必然就是引力
不自由的,那就当然不等价,




爱因斯坦把光速在一切坐标系中的速度恒定 作为基本假设


这里面很有趣,虽然是基于事实,然后又提到了原理的高度,貌似不用再深究了,实际上还是可以想想为什么的。。。


1 光速不是关键,关键是一个通信速度的上限

不是刚刚有新闻,光被暂停了一分钟云云之类,再者光在介质中就低于光速,这里问题不是光

而是宇宙中存在一个相互作用传递的速度上限,通信的极限


2 这个速度上限恒定并不奇怪,奇怪的是这个上限是有限的

过去我们也默认一个恒定的上限,那就是无穷大,过去认为信号瞬间传播,即是光速无穷大,那也和伽利略变换不矛盾了,无穷+有限=无穷

奇怪的是  有限<c+有限<c,怎么加都不超过一个c,  c+有限=c


3 为什么有一个有限的速度上限?

答曰  为了统一性,为了普适性,为了把时间和空间统一到一起

光速的存在是为了联系时间和空间,如果光速无穷大,则时间和空间是割裂的,光速是一个有限值,则时间和空间可以联系到一起


时空间隔,正是一个有限的,且不依赖任何参考系的c,起到联系了时间和空间的作用,才给时空统一到了一起,要是无穷大,那两个东西就写不到一起了,退化到了牛顿的绝对时间和空间了


4 认知论

其实呢,最开始时空本来就是一起 ,人类的认知导致分别认识了时间 和 空间的概念,但最终还是要重新回到统一

推而广之,一切物理量都应该如此,一切物理常数都应该如此







在 2013年8月4日上午11:29,王雄 <wangxiong8686@gmail.com>写道:

爱因斯坦所谓统一的真意: 原理统治一切


以前不明白到底爱因斯坦为什么要统一引力与电磁力,这种所谓的统一到底是什么意思?

在弯曲时空下的电磁场方程不是很容易就写出来了吗?把普通导数换成协变导数就可以了?

 

爱因斯坦在他的自述里说,他的目标是一个可以构成整个物理学基础的场论

 

自从引力理论这项工作结束以来,到现在四十年过去了。这些岁月我几乎全部用来为了从引力场理论推广到一个可以构成整个物理学基础的场论而绞尽脑汁。有许多人向着同一个目标而工作着。许多充满希望的推广我后来一个个放弃了。但是最近十年终于找到一个在我看来是自然而又富有希望的理论。不过,我还是不能确信,我自己是否应当认为这个理论在物理学上是极有价值的,这是由于这个理论是以目前还不能克服的数学困难为基础的,而这种困难凡是应用任何非线性场论都会出现。

   此外,看来完全值得怀疑的是,一种场论是否能够解释物质的原子结构和辐射以及量子现象。大多数物理学家都是不加思索地用一个有把握的“否”字来回答,因为他们相信,量子问题在原则上要用另一类方法来解决。问题究竟怎样,使我想起莱辛的鼓舞人心的言词:“为寻求真理的努力所付出的代价,总是比不担风险地占有它要高昂得多。”



我现在才真正理解这个统一的真意!

事实上,就是要用高层的原理来推出一切底层的动力学。

从牛顿和伽利略说起,这是两个不同层次的人,牛顿是动力学层次的,伽利略是原理层次的。
牛顿有两块东西,一个是牛顿的运动定律,一个是牛顿的万有引力,都是动力学层次的;
伽利略有一个原理,惯性系平权的相对性原理,这个原理结合牛顿的割裂的时空观,就得到伽利略变换,即伽利略相对性原理;

他们俩之后,又有麦克斯韦的电磁场理论,也是动力学层次的东西;

这就是爱因斯坦之前的物理,三块动力学,一个原理

但在这个时候,原理的威力还不明显,事实上伽利略原理所规定的时空的对称性,也可以推出牛顿的运动定律,但这个并不显示太多力量


这些就是前爱因斯坦时代

三块东西其实是很多矛盾的,没法整合到一个理论框架下,问题如下:
1 伽利略相对性原理和电磁场理论的矛盾
电磁场理论里光速不依赖参考系;这个妥协的“解决”方法是承认相对性原理不适用电磁场,电磁场理论只在某个特殊的绝对静止的参考系里成立,这是一个大大的倒退。爱因斯坦笃信相对性原理的普适性,不接受这种倒退,恰恰是迎难而上,找到问题的症结在割裂的绝对时间和绝对空间,通过建立新时空观,爱因斯坦维护和推广了伽利略相对性原理,让一切物理规律在惯性系里都平等。
至此,两块动力学,一个原理,都和谐了,没有矛盾了;还有一个牛顿万有引力,还有矛盾
不过到此为止,原理的力量还是不明显,主要只是有筛选各种动力学物理规律的作用,却不能规定具体的动力学内容 
牛顿运动学可以被原理导出,但电磁场不能被导出,引力也不能被原理导出,而且目前引力都不符合这个狭义相对性原理 

2 万有引力没法和狭义相对论协调
这个问题的解决,是爱因斯坦一生最高兴的思考,也许也是人类历史上,最深刻的思考。
狭义相对论建立后,电磁方程天然满足,牛顿运动学稍加改造即可,唯独万有引力很麻烦,很多人尝试用各种牵强的方法来改造牛顿万有引力来满足狭义相对论的要求,都失败了,或者总之非常之牵强曲折。
爱因斯坦从来都不会做这种丑陋的修修补补,他总是独辟蹊径。他明白狭义相对性原理,并不完美,还有进一步推广的必要。



关于在伯尔尼的那些愉快的年代里的科学生涯,在这里我只谈一件事,它显示出我这一生中最富有成果的思想。狭义相对论问世已有好几年。相对性原理是不是只局限于惯性系(即彼此相对作匀速运动的坐标系)呢?形式的直觉回答说:“大概不!”然而,直到那时为止的全部力学的基础——惯性原理——看来却不允许把相对性原理作任何推广。如果一个人实际上处于一个(相对于惯性系)加速运动的坐标系中,那末一个“孤立”质点的运动相对于这个人就不是沿着直线而匀速的。从窒息人的思维习惯中解放出来的人立即会问:这种行为能不能给我提供一个办法去分辩一个惯性系和一个非惯性系呢,他一定(至少是在直线等加速运动的情况下)会断定说:事情并如此。因为人们也可以把相对于一个这样加速运动的坐标系的那种物体的力学行为解释为引力场作用的结果这件事之所以可能,是由于这样的经验事实:在引力场中,各个物体的加速度同这些物体的性质无关,总都是相同的。这种知识(等效原理)不仅有可能使得自然规律对于一个普遍的变换群,正如对于洛伦兹变换群那样,必须是不变的(相对性原理的推广),而且也有可能使得这种推广导致一个深入的引力理论。这种思想在原则上是正确的,对此我没有丝毫怀疑。但是,要把他贯彻到底,看来有几乎无法克服的困难。首先,产生了一个初步考虑:向一个更广义的变换群过度,同那个开辟了狭义相对论道路的时空坐标系的直接物理解释不相容。其次,暂时还不能预见到怎样去选择推广的变换群。

这是爱因斯坦一生最幸福的思考,他第一次体会到原理的强大威力,通过推广狭义相对性原理,居然可以如此自然地把引力包容进来,相当于引力的动力学被时空的几何给“吸收”了,这就是引力几何化的思想。

这种想法如此之美妙简洁,威力如此巨大,以至于爱因斯坦想,电磁能不能也给吸收了????

 


所以,爱因斯坦就把伽利略的相对性原理、牛顿的动力学、牛顿的万有引力,这一个原理、两个动力学,全部非常自然地囊括到了一个统一的广义相对论的框架了

这是大大的简化,大大地深刻,大大的统一,大大的美

爱因斯坦的目标,就是一切的原理化,一切的几何化,在当时看来,就只剩下电磁了。。。 

爱因斯坦说他的场方程,左边之所以写成这样的形式,是要使它的散度在绝对微分学意义下恒等于零。右边是对一切在场论意义上看来其含意还成问题的东西所作的一种形式上的总括。当然,我一刻也没有怀疑过,这种表述方式仅仅是一种权宜之计,以便给予广义相对性原理以一个初步的自圆其说的表示。因为它本质上不过是一种引力场理论,这种引力场是有点人为地从还不知道其结构的总场中分离出来的。


所以,爱因斯坦这里提到的,总场的方程,如果找到了,那就是上帝的公式


 


不过分析这种统一,是一个非常冒险的工作,难点有很多,目前我的想法如下:

1 引力太特殊
引力之所以能几何化,是由于其特殊的性质,或者说引力本来就是几何,而牛顿误认为是一种力,所以引力几何化是一种幸运,但电磁是如此吗?电磁和其他的相互作用,与引力很不一样;事实上,电磁和别的相互作用,现在都被规范场说描述,是一种很不同于时空对称性的,一种内部空间对称性,但这些规范场的东西,并不像爱因斯坦做引力那样,源于推广相对性原理+一个基于实验事实的等效原理
规范场的东西,是一个很抽象的原理,就是规范变换可以局域的来做
不过这两套似乎都在微分几何里找得到很好的描述,纤维丛理论等等

2 相对性原理的发展空间 
是否已经像爱因斯坦说追求的那样,一切参考系对一切物理规律平等? 显然没有,至少只是光滑的变换,



3 爱因斯坦之后,又发生了很多东西,最大的麻烦就是量子
爱因斯坦辛辛苦苦想深入贯彻相对性原理,然后统一他之前的那几大块力学
但他之后的物理,发展了很多很多新的东西出来,量子就是最麻烦的一个
前面没统一起来,后面新的又来了,这是爱因斯坦的尴尬,但我认为也许又正是一个契机,也许就像拼图一样,爱因斯坦当时手头的拼图还不够呢,无法凑起来整个的画面

4 最后,原理真的能吸收一切动力学吗?
其实这个问题类似3,你怎么知道到底还有多少种乱七八糟的力学呢???后来确实发现,除了电磁,还有弱相互,强相互,等等,还会不会有其他的,谁知道,所以原理还是只是原理?就像宪法,是法律的法律,但不可能全部由宪法取代掉别的法?是这样吗?还是真的能一个普适的原则,导出一切的东西?

所以爱因斯坦的梦想,是一个相当大胆,相当冒险,相当赌博的尝试, 是想原理统治一切

那就是上帝之光,普照万民了 



Re: 相对性原理应该继续贯彻下去!

1 广义相对性原理到底有木有约束力
一切物理规律在一切参考系中有相同的形式,这么说是否有实质约束力?
有人说牛顿引力都可以通过一些平凡的改造使得在一切参考系中都是一样的形式,  
有些书比较可操作的处理是,一切物理规律的表述中,只有度规及其衍生的量才能出现在时空背景当中
实际上,就是说物理规律是几何的,不依赖于人为选取的坐标系

再深究一下,哪些东西可以出现在物理规律中?
基本常数?必须是普适的不变的,而不依赖于任何人为的东西,这里面很有趣,光速的存在是为了联系时间和空间,如果光速无穷大,则时间和空间是割裂的,光速是一个有限值,则时间和空间可以联系到一起

基本物理量?张量?这个完全决定于变换群,决定于几何

然后是时空,就是度规?

2  等效原理
引力就纯粹和惯性力等价?
关键引力被认为是真实物质造成的,而惯性力被认为是假的
这里问题是,什么样的东西能导致惯性力???
关键是自由与否,如果是自由观察者,他的惯性力,必然来源于物质导致的时空分布,这种必然就是引力
不自由的,那就当然不等价,




爱因斯坦把光速在一切坐标系中的速度恒定 作为基本假设


这里面很有趣,虽然是基于事实,然后又提到了原理的高度,貌似不用再深究了,实际上还是可以想想为什么的。。。


1 光速不是关键,关键是一个通信速度的上限

不是刚刚有新闻,光被暂停了一分钟云云之类,再者光在介质中就低于光速,这里问题不是光

而是宇宙中存在一个相互作用传递的速度上限,通信的极限


2 这个速度上限恒定并不奇怪,奇怪的是这个上限是有限的

过去我们也默认一个恒定的上限,那就是无穷大,过去认为信号瞬间传播,即是光速无穷大,那也和伽利略变换不矛盾了,无穷+有限=无穷

奇怪的是  有限<c+有限<c,怎么加都不超过一个c,  c+有限=c


3 为什么有一个有限的速度上限?

答曰  为了统一性,为了普适性,为了把时间和空间统一到一起

光速的存在是为了联系时间和空间,如果光速无穷大,则时间和空间是割裂的,光速是一个有限值,则时间和空间可以联系到一起


时空间隔,正是一个有限的,且不依赖任何参考系的c,起到联系了时间和空间的作用,才给时空统一到了一起,要是无穷大,那两个东西就写不到一起了,退化到了牛顿的绝对时间和空间了


4 认知论

其实呢,最开始时空本来就是一起 ,人类的认知导致分别认识了时间 和 空间的概念,但最终还是要重新回到统一

推而广之,一切物理量都应该如此,一切物理常数都应该如此







在 2013年8月4日上午11:29,王雄 <wangxiong8686@gmail.com>写道:

爱因斯坦所谓统一的真意: 原理统治一切


以前不明白到底爱因斯坦为什么要统一引力与电磁力,这种所谓的统一到底是什么意思?

在弯曲时空下的电磁场方程不是很容易就写出来了吗?把普通导数换成协变导数就可以了?

 

爱因斯坦在他的自述里说,他的目标是一个可以构成整个物理学基础的场论

 

自从引力理论这项工作结束以来,到现在四十年过去了。这些岁月我几乎全部用来为了从引力场理论推广到一个可以构成整个物理学基础的场论而绞尽脑汁。有许多人向着同一个目标而工作着。许多充满希望的推广我后来一个个放弃了。但是最近十年终于找到一个在我看来是自然而又富有希望的理论。不过,我还是不能确信,我自己是否应当认为这个理论在物理学上是极有价值的,这是由于这个理论是以目前还不能克服的数学困难为基础的,而这种困难凡是应用任何非线性场论都会出现。

   此外,看来完全值得怀疑的是,一种场论是否能够解释物质的原子结构和辐射以及量子现象。大多数物理学家都是不加思索地用一个有把握的“否”字来回答,因为他们相信,量子问题在原则上要用另一类方法来解决。问题究竟怎样,使我想起莱辛的鼓舞人心的言词:“为寻求真理的努力所付出的代价,总是比不担风险地占有它要高昂得多。”



我现在才真正理解这个统一的真意!

事实上,就是要用高层的原理来推出一切底层的动力学。

从牛顿和伽利略说起,这是两个不同层次的人,牛顿是动力学层次的,伽利略是原理层次的。
牛顿有两块东西,一个是牛顿的运动定律,一个是牛顿的万有引力,都是动力学层次的;
伽利略有一个原理,惯性系平权的相对性原理,这个原理结合牛顿的割裂的时空观,就得到伽利略变换,即伽利略相对性原理;

他们俩之后,又有麦克斯韦的电磁场理论,也是动力学层次的东西;

这就是爱因斯坦之前的物理,三块动力学,一个原理

但在这个时候,原理的威力还不明显,事实上伽利略原理所规定的时空的对称性,也可以推出牛顿的运动定律,但这个并不显示太多力量


这些就是前爱因斯坦时代

三块东西其实是很多矛盾的,没法整合到一个理论框架下,问题如下:
1 伽利略相对性原理和电磁场理论的矛盾
电磁场理论里光速不依赖参考系;这个妥协的“解决”方法是承认相对性原理不适用电磁场,电磁场理论只在某个特殊的绝对静止的参考系里成立,这是一个大大的倒退。爱因斯坦笃信相对性原理的普适性,不接受这种倒退,恰恰是迎难而上,找到问题的症结在割裂的绝对时间和绝对空间,通过建立新时空观,爱因斯坦维护和推广了伽利略相对性原理,让一切物理规律在惯性系里都平等。
至此,两块动力学,一个原理,都和谐了,没有矛盾了;还有一个牛顿万有引力,还有矛盾
不过到此为止,原理的力量还是不明显,主要只是有筛选各种动力学物理规律的作用,却不能规定具体的动力学内容 
牛顿运动学可以被原理导出,但电磁场不能被导出,引力也不能被原理导出,而且目前引力都不符合这个狭义相对性原理 

2 万有引力没法和狭义相对论协调
这个问题的解决,是爱因斯坦一生最高兴的思考,也许也是人类历史上,最深刻的思考。
狭义相对论建立后,电磁方程天然满足,牛顿运动学稍加改造即可,唯独万有引力很麻烦,很多人尝试用各种牵强的方法来改造牛顿万有引力来满足狭义相对论的要求,都失败了,或者总之非常之牵强曲折。
爱因斯坦从来都不会做这种丑陋的修修补补,他总是独辟蹊径。他明白狭义相对性原理,并不完美,还有进一步推广的必要。



关于在伯尔尼的那些愉快的年代里的科学生涯,在这里我只谈一件事,它显示出我这一生中最富有成果的思想。狭义相对论问世已有好几年。相对性原理是不是只局限于惯性系(即彼此相对作匀速运动的坐标系)呢?形式的直觉回答说:“大概不!”然而,直到那时为止的全部力学的基础——惯性原理——看来却不允许把相对性原理作任何推广。如果一个人实际上处于一个(相对于惯性系)加速运动的坐标系中,那末一个“孤立”质点的运动相对于这个人就不是沿着直线而匀速的。从窒息人的思维习惯中解放出来的人立即会问:这种行为能不能给我提供一个办法去分辩一个惯性系和一个非惯性系呢,他一定(至少是在直线等加速运动的情况下)会断定说:事情并如此。因为人们也可以把相对于一个这样加速运动的坐标系的那种物体的力学行为解释为引力场作用的结果这件事之所以可能,是由于这样的经验事实:在引力场中,各个物体的加速度同这些物体的性质无关,总都是相同的。这种知识(等效原理)不仅有可能使得自然规律对于一个普遍的变换群,正如对于洛伦兹变换群那样,必须是不变的(相对性原理的推广),而且也有可能使得这种推广导致一个深入的引力理论。这种思想在原则上是正确的,对此我没有丝毫怀疑。但是,要把他贯彻到底,看来有几乎无法克服的困难。首先,产生了一个初步考虑:向一个更广义的变换群过度,同那个开辟了狭义相对论道路的时空坐标系的直接物理解释不相容。其次,暂时还不能预见到怎样去选择推广的变换群。

这是爱因斯坦一生最幸福的思考,他第一次体会到原理的强大威力,通过推广狭义相对性原理,居然可以如此自然地把引力包容进来,相当于引力的动力学被时空的几何给“吸收”了,这就是引力几何化的思想。

这种想法如此之美妙简洁,威力如此巨大,以至于爱因斯坦想,电磁能不能也给吸收了????

 


所以,爱因斯坦就把伽利略的相对性原理、牛顿的动力学、牛顿的万有引力,这一个原理、两个动力学,全部非常自然地囊括到了一个统一的广义相对论的框架了

这是大大的简化,大大地深刻,大大的统一,大大的美

爱因斯坦的目标,就是一切的原理化,一切的几何化,在当时看来,就只剩下电磁了。。。 

爱因斯坦说他的场方程,左边之所以写成这样的形式,是要使它的散度在绝对微分学意义下恒等于零。右边是对一切在场论意义上看来其含意还成问题的东西所作的一种形式上的总括。当然,我一刻也没有怀疑过,这种表述方式仅仅是一种权宜之计,以便给予广义相对性原理以一个初步的自圆其说的表示。因为它本质上不过是一种引力场理论,这种引力场是有点人为地从还不知道其结构的总场中分离出来的。


所以,爱因斯坦这里提到的,总场的方程,如果找到了,那就是上帝的公式


 


不过分析这种统一,是一个非常冒险的工作,难点有很多,目前我的想法如下:

1 引力太特殊
引力之所以能几何化,是由于其特殊的性质,或者说引力本来就是几何,而牛顿误认为是一种力,所以引力几何化是一种幸运,但电磁是如此吗?电磁和其他的相互作用,与引力很不一样;事实上,电磁和别的相互作用,现在都被规范场说描述,是一种很不同于时空对称性的,一种内部空间对称性,但这些规范场的东西,并不像爱因斯坦做引力那样,源于推广相对性原理+一个基于实验事实的等效原理
规范场的东西,是一个很抽象的原理,就是规范变换可以局域的来做
不过这两套似乎都在微分几何里找得到很好的描述,纤维丛理论等等

2 相对性原理的发展空间 
是否已经像爱因斯坦说追求的那样,一切参考系对一切物理规律平等? 显然没有,至少只是光滑的变换,



3 爱因斯坦之后,又发生了很多东西,最大的麻烦就是量子
爱因斯坦辛辛苦苦想深入贯彻相对性原理,然后统一他之前的那几大块力学
但他之后的物理,发展了很多很多新的东西出来,量子就是最麻烦的一个
前面没统一起来,后面新的又来了,这是爱因斯坦的尴尬,但我认为也许又正是一个契机,也许就像拼图一样,爱因斯坦当时手头的拼图还不够呢,无法凑起来整个的画面

4 最后,原理真的能吸收一切动力学吗?
其实这个问题类似3,你怎么知道到底还有多少种乱七八糟的力学呢???后来确实发现,除了电磁,还有弱相互,强相互,等等,还会不会有其他的,谁知道,所以原理还是只是原理?就像宪法,是法律的法律,但不可能全部由宪法取代掉别的法?是这样吗?还是真的能一个普适的原则,导出一切的东西?

所以爱因斯坦的梦想,是一个相当大胆,相当冒险,相当赌博的尝试, 是想原理统治一切

那就是上帝之光,普照万民了 


Saturday, August 3, 2013

Re: 相对性原理应该继续贯彻下去!

爱因斯坦所谓统一的真意: 原理统治一切


以前不明白到底爱因斯坦为什么要统一引力与电磁力,这种所谓的统一到底是什么意思?

在弯曲时空下的电磁场方程不是很容易就写出来了吗?把普通导数换成协变导数就可以了?

 

爱因斯坦在他的自述里说,他的目标是一个可以构成整个物理学基础的场论

 

自从引力理论这项工作结束以来,到现在四十年过去了。这些岁月我几乎全部用来为了从引力场理论推广到一个可以构成整个物理学基础的场论而绞尽脑汁。有许多人向着同一个目标而工作着。许多充满希望的推广我后来一个个放弃了。但是最近十年终于找到一个在我看来是自然而又富有希望的理论。不过,我还是不能确信,我自己是否应当认为这个理论在物理学上是极有价值的,这是由于这个理论是以目前还不能克服的数学困难为基础的,而这种困难凡是应用任何非线性场论都会出现。

   此外,看来完全值得怀疑的是,一种场论是否能够解释物质的原子结构和辐射以及量子现象。大多数物理学家都是不加思索地用一个有把握的“否”字来回答,因为他们相信,量子问题在原则上要用另一类方法来解决。问题究竟怎样,使我想起莱辛的鼓舞人心的言词:“为寻求真理的努力所付出的代价,总是比不担风险地占有它要高昂得多。”



我现在才真正理解这个统一的真意!

事实上,就是要用高层的原理来推出一切底层的动力学。

从牛顿和伽利略说起,这是两个不同层次的人,牛顿是动力学层次的,伽利略是原理层次的。
牛顿有两块东西,一个是牛顿的运动定律,一个是牛顿的万有引力,都是动力学层次的;
伽利略有一个原理,惯性系平权的相对性原理,这个原理结合牛顿的割裂的时空观,就得到伽利略变换,即伽利略相对性原理;

他们俩之后,又有麦克斯韦的电磁场理论,也是动力学层次的东西;

这就是爱因斯坦之前的物理,三块动力学,一个原理

但在这个时候,原理的威力还不明显,事实上伽利略原理所规定的时空的对称性,也可以推出牛顿的运动定律,但这个并不显示太多力量


这些就是前爱因斯坦时代

三块东西其实是很多矛盾的,没法整合到一个理论框架下,问题如下:
1 伽利略相对性原理和电磁场理论的矛盾
电磁场理论里光速不依赖参考系;这个妥协的“解决”方法是承认相对性原理不适用电磁场,电磁场理论只在某个特殊的绝对静止的参考系里成立,这是一个大大的倒退。爱因斯坦笃信相对性原理的普适性,不接受这种倒退,恰恰是迎难而上,找到问题的症结在割裂的绝对时间和绝对空间,通过建立新时空观,爱因斯坦维护和推广了伽利略相对性原理,让一切物理规律在惯性系里都平等。
至此,两块动力学,一个原理,都和谐了,没有矛盾了;还有一个牛顿万有引力,还有矛盾
不过到此为止,原理的力量还是不明显,主要只是有筛选各种动力学物理规律的作用,却不能规定具体的动力学内容 
牛顿运动学可以被原理导出,但电磁场不能被导出,引力也不能被原理导出,而且目前引力都不符合这个狭义相对性原理 

2 万有引力没法和狭义相对论协调
这个问题的解决,是爱因斯坦一生最高兴的思考,也许也是人类历史上,最深刻的思考。
狭义相对论建立后,电磁方程天然满足,牛顿运动学稍加改造即可,唯独万有引力很麻烦,很多人尝试用各种牵强的方法来改造牛顿万有引力来满足狭义相对论的要求,都失败了,或者总之非常之牵强曲折。
爱因斯坦从来都不会做这种丑陋的修修补补,他总是独辟蹊径。他明白狭义相对性原理,并不完美,还有进一步推广的必要。

关于在伯尔尼的那些愉快的年代里的科学生涯,在这里我只谈一件事,它显示出我这一生中最富有成果的思想。狭义相对论问世已有好几年。相对性原理是不是只局限于惯性系(即彼此相对作匀速运动的坐标系)呢?形式的直觉回答说:“大概不!”然而,直到那时为止的全部力学的基础——惯性原理——看来却不允许把相对性原理作任何推广。如果一个人实际上处于一个(相对于惯性系)加速运动的坐标系中,那末一个“孤立”质点的运动相对于这个人就不是沿着直线而匀速的。从窒息人的思维习惯中解放出来的人立即会问:这种行为能不能给我提供一个办法去分辩一个惯性系和一个非惯性系呢,他一定(至少是在直线等加速运动的情况下)会断定说:事情并如此。因为人们也可以把相对于一个这样加速运动的坐标系的那种物体的力学行为解释为引力场作用的结果这件事之所以可能,是由于这样的经验事实:在引力场中,各个物体的加速度同这些物体的性质无关,总都是相同的。这种知识(等效原理)不仅有可能使得自然规律对于一个普遍的变换群,正如对于洛伦兹变换群那样,必须是不变的(相对性原理的推广),而且也有可能使得这种推广导致一个深入的引力理论。这种思想在原则上是正确的,对此我没有丝毫怀疑。但是,要把他贯彻到底,看来有几乎无法克服的困难。首先,产生了一个初步考虑:向一个更广义的变换群过度,同那个开辟了狭义相对论道路的时空坐标系的直接物理解释不相容。其次,暂时还不能预见到怎样去选择推广的变换群。

这是爱因斯坦一生最幸福的思考,他第一次体会到原理的强大威力,通过推广狭义相对性原理,居然可以如此自然地把引力包容进来,相当于引力的动力学被时空的几何给“吸收”了,这就是引力几何化的思想。

这种想法如此之美妙简洁,威力如此巨大,以至于爱因斯坦想,电磁能不能也给吸收了????

 


所以,爱因斯坦就把伽利略的相对性原理、牛顿的动力学、牛顿的万有引力,这一个原理、两个动力学,全部非常自然地囊括到了一个统一的广义相对论的框架了

这是大大的简化,大大地深刻,大大的统一,大大的美

爱因斯坦的目标,就是一切的原理化,一切的几何化,在当时看来,就只剩下电磁了。。。 

爱因斯坦说他的场方程,左边之所以写成这样的形式,是要使它的散度在绝对微分学意义下恒等于零。右边是对一切在场论意义上看来其含意还成问题的东西所作的一种形式上的总括。当然,我一刻也没有怀疑过,这种表述方式仅仅是一种权宜之计,以便给予广义相对性原理以一个初步的自圆其说的表示。因为它本质上不过是一种引力场理论,这种引力场是有点人为地从还不知道其结构的总场中分离出来的。


所以,爱因斯坦这里提到的,总场的方程,如果找到了,那就是上帝的公式


 


不过分析这种统一,是一个非常冒险的工作,难点有很多,目前我的想法如下:

1 引力太特殊
引力之所以能几何化,是由于其特殊的性质,或者说引力本来就是几何,而牛顿误认为是一种力,所以引力几何化是一种幸运,但电磁是如此吗?电磁和其他的相互作用,与引力很不一样;事实上,电磁和别的相互作用,现在都被规范场说描述,是一种很不同于时空对称性的,一种内部空间对称性,但这些规范场的东西,并不像爱因斯坦做引力那样,源于推广相对性原理+一个基于实验事实的等效原理
规范场的东西,是一个很抽象的原理,就是规范变换可以局域的来做
不过这两套似乎都在微分几何里找得到很好的描述,纤维丛理论等等

2 相对性原理的发展空间 
是否已经像爱因斯坦说追求的那样,一切参考系对一切物理规律平等? 显然没有,至少只是光滑的变换,



3 爱因斯坦之后,又发生了很多东西,最大的麻烦就是量子
爱因斯坦辛辛苦苦想深入贯彻相对性原理,然后统一他之前的那几大块力学
但他之后的物理,发展了很多很多新的东西出来,量子就是最麻烦的一个
前面没统一起来,后面新的又来了,这是爱因斯坦的尴尬,但我认为也许又正是一个契机,也许就像拼图一样,爱因斯坦当时手头的拼图还不够呢,无法凑起来整个的画面

4 最后,原理真的能吸收一切动力学吗?
其实这个问题类似3,你怎么知道到底还有多少种乱七八糟的力学呢???后来确实发现,除了电磁,还有弱相互,强相互,等等,还会不会有其他的,谁知道,所以原理还是只是原理?就像宪法,是法律的法律,但不可能全部由宪法取代掉别的法?是这样吗?还是真的能一个普适的原则,导出一切的东西?

所以爱因斯坦的梦想,是一个相当大胆,相当冒险,相当赌博的尝试, 是想原理统治一切

那就是上帝之光,普照万民了 

Thursday, September 13, 2012

提醒你, Xiong Wang 邀请你加入 Facebook ...

facebook
Xiong Wang 希望成为你在Facebook的朋友。无论是你离朋友和家人有多远,Facebook可以帮你保持联系。
Other people have asked to be your friend on Facebook. Accept this invitation to see your previous friend requests
Xiong Wang
Shanghai Jiao Tong University · Hong Kong
67 个朋友 · 2 篇日志
接受邀请
访问Facebook
This message was sent to wangxiong8686.love@blogger.com. If you don't want to receive these emails from Facebook in the future or have your email address used for friend suggestions, please click: unsubscribe.
Facebook, Inc. Attention: Department 415 P.O Box 10005 Palo Alto CA 94303

Tuesday, September 11, 2012

我在 Facebook 上找你呢

王雄希望与大家分享照片和更新状态。
快到 Facebook 来找雄吧!
雄 has invited you to Facebook. After you sign up, you'll be able to stay connected with friends by sharing photos and videos, posting status updates, sending messages and more.

Thursday, May 24, 2012

Re: INTERNAL, EXTERNAL AND GENERALIZED SYMMETRIES

In physics, a gauge theory is a type of field theory in which the Lagrangian is invariant under acontinuous group of local transformations.

The term gauge refers to redundant degrees of freedom in the Lagrangian. The transformations between possible gauges, called gauge transformations, form a Lie group which is referred to as thesymmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebraof group generators. For each group generator there necessarily arises a corresponding vector fieldcalled the gauge field. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called gauge invariance). When such a theory is quantized, the quantaof the gauge fields are called gauge bosons. If the symmetry group is non-commutative, the gauge theory is referred to as non-abelian, the usual example being the Yang–Mills theory.

Gauge theories are important as the successful field theories explaining the dynamics of elementary particlesQuantum electrodynamics is an abelian gauge theory with the symmetry group U(1) and has one gauge field, the electromagnetic field, with the photon being the gauge boson. The Standard Model is a non-abelian gauge theory with the symmetry group U(1)×SU(2)×SU(3) and has a total of twelve gauge bosons: the photon, three weak bosons and eight gluons.

Many powerful theories in physics are described by Lagrangians which are invariant under some symmetry transformation groups. When they are invariant under a transformation identically performed at every point in the space in which the physical processes occur, they are said to have aglobal symmetry. The requirement of local symmetry, the cornerstone of gauge theories, is a stricter constraint. In fact, a global symmetry is just a local symmetry whose group's parameters are fixed in space-time. Gauge symmetries can be viewed as analogues of the equivalence principle of general relativity in which each point in space-time is allowed a choice of local reference (coordinate) frame. Both symmetries reflect a redundancy in the description of a system.

Historically, these ideas were first stated in the context of classical electromagnetism and later ingeneral relativity. However, the modern importance of gauge symmetries appeared first in therelativistic quantum mechanics of electrons – quantum electrodynamics, elaborated on below. Today, gauge theories are useful in condensed matternuclear and high energy physics among other subfields.

Contents

  [hide

[edit]History and importance

The earliest field theory having a gauge symmetry was Maxwell's formulation of electrodynamics in 1864. The importance of this symmetry remained unnoticed in the earliest formulations. Similarly unnoticed, Hilbert had derived the Einstein field equations by postulating the invariance of the actionunder a general coordinate transformation. Later Hermann Weyl, in an attempt to unify general relativity and electromagnetism, conjectured (incorrectly, as it turned out) that Eichinvarianz or invariance under the change of scale (or "gauge") might also be a local symmetry of general relativity. After the development of quantum mechanics, Weyl, Vladimir Fock and Fritz Londonmodified gauge by replacing the scale factor with a complex quantity and turned the scale transformation into a change of phase — a U(1) gauge symmetry. This explained theelectromagnetic field effect on the wave function of a charged quantum mechanical particle. This was the first widely recognised gauge theory, popularised by Pauli in the 1940s.[1]

In 1954, attempting to resolve some of the great confusion in elementary particle physicsChen Ning Yang and Robert Mills introduced non-abelian gauge theories as models to understand the strong interaction holding together nucleons in atomic nuclei. (Ronald Shaw, working under Abdus Salam, independently introduced the same notion in his doctoral thesis.) Generalizing the gauge invariance of electromagnetism, they attempted to construct a theory based on the action of the (non-abelian) SU(2) symmetry group on the isospin doublet of protons and neutrons. This is similar to the action of the U(1) group on the spinor fields of quantum electrodynamics. In particle physics the emphasis was on using quantized gauge theories.

This idea later found application in the quantum field theory of the weak force, and its unification with electromagnetism in the electroweak theory. Gauge theories became even more attractive when it was realized that non-abelian gauge theories reproduced a feature called asymptotic freedom. Asymptotic freedom was believed to be an important characteristic of strong interactions. This motivated searching for a strong force gauge theory. This theory, now known as quantum chromodynamics, is a gauge theory with the action of the SU(3) group on the color triplet of quarks. The Standard Model unifies the description of electromagnetism, weak interactions and strong interactions in the language of gauge theory.

In the 1970s, Sir Michael Atiyah began studying the mathematics of solutions to the classical Yang–Mills equations. In 1983, Atiyah's student Simon Donaldson built on this work to show that thedifferentiable classification of smooth 4-manifolds is very different from their classification up tohomeomorphismMichael Freedman used Donaldson's work to exhibit exotic R4s, that is, exoticdifferentiable structures on Euclidean 4-dimensional space. This led to an increasing interest in gauge theory for its own sake, independent of its successes in fundamental physics. In 1994,Edward Witten and Nathan Seiberg invented gauge-theoretic techniques based on supersymmetrywhich enabled the calculation of certain topological invariants. These contributions to mathematics from gauge theory have led to a renewed interest in this area.

The importance of gauge theories in physics is exemplified in the tremendous success of the mathematical formalism in providing a unified framework to describe the quantum field theories ofelectromagnetism, the weak force and the strong force. This theory, known as the Standard Model, accurately describes experimental predictions regarding three of the four fundamental forces of nature, and is a gauge theory with the gauge group SU(3) × SU(2) × U(1). Modern theories like string theory, as well as some formulations of general relativity, are, in one way or another, gauge theories.

See Pickering for more about the history of gauge and quantum field theories.[2]

[edit]Description

[edit]Global and local symmetries

In physics, the mathematical description of any physical situation usually contains excess degrees of freedom; the same physical situation is equally well described by many equivalent mathematical configurations. For instance, in Newtonian dynamics, if two configurations are related by a Galilean transformation—an inertial change of reference frame—they represent the same physical situation. These transformations form a group of "symmetries" of the theory, and a physical situation corresponds not to an individual mathematical configuration but to a class of configurations related to one another by this symmetry group. This idea can be generalized to include local as well as global symmetries, analogous to much more abstract "changes of coordinates" in a situation where there is no preferred "inertial" coordinate system that covers the entire physical system. A gauge theory is a mathematical model that has symmetries of this kind, together with a set of techniques for making physical predictions consistent with the symmetries of the model.

[edit]Example of global symmetry

When a quantity occurring in the mathematical configuration is not just a number but has some geometrical significance, such as a velocity or an axis of rotation, its representation as numbers arranged in a vector or matrix is also changed by a coordinate transformation. For instance, if one description of a pattern of fluid flow states that the fluid velocity in the neighborhood of (x=1, y=0) is 1 m/s in the positive x direction, then a description of the same situation in which the coordinate system has been rotated clockwise by 90 degrees will state that the fluid velocity in the neighborhood of (x=0, y=1) is 1 m/s in the positive y direction. The coordinate transformation has affected both the coordinate system used to identify the location of the measurement and the basis in which its valueis expressed. As long as this transformation is performed globally (affecting the coordinate basis in the same way at every point), the effect on values that represent the rate of change of some quantity along some path in space and time as it passes through point P is the same as the effect on values that are truly local to P.

[edit]Use of fiber bundles to describe local symmetries

In order to adequately describe physical situations in more complex theories, it is often necessary to introduce a "coordinate basis" for some of the objects of the theory that do not have this simple relationship to the coordinates used to label points in space and time. (In mathematical terms, the theory involves a fiber bundle in which the fiber at each point of the base space consists of possible coordinate bases for use when describing the values of objects at that point.) In order to spell out a mathematical configuration, one must choose a particular coordinate basis at each point (a local section of the fiber bundle) and express the values of the objects of the theory (usually "fields" in the physicist's sense) using this basis. Two such mathematical configurations are equivalent (describe the same physical situation) if they are related by a transformation of this abstract coordinate basis (a change of local section, or gauge transformation).

In most gauge theories, the set of possible transformations of the abstract gauge basis at an individual point in space and time is a finite-dimensional Lie group. The simplest such group is U(1), which appears in the modern formulation of quantum electrodynamics (QED) via its use of complex numbers. QED is generally regarded as the first, and simplest, physical gauge theory. The set of possible gauge transformations of the entire configuration of a given gauge theory also forms a group, the gauge group of the theory. An element of the gauge group can be parameterized by a smoothly varying function from the points of spacetime to the (finite-dimensional) Lie group, whose value at each point represents the action of the gauge transformation on the fiber over that point.

A gauge transformation with constant parameter at every point in space and time is analogous to a rigid rotation of the geometric coordinate system; it represents a global symmetry of the gauge representation. As in the case of a rigid rotation, this gauge transformation affects expressions that represent the rate of change along a path of some gauge-dependent quantity in the same way as those that represent a truly local quantity. A gauge transformation whose parameter is not a constant function is referred to as a local symmetry; its effect on expressions that involve a derivative is qualitatively different from that on expressions that don't. (This is analogous to a non-inertial change of reference frame, which can produce a Coriolis effect.)

[edit]Gauge fields

The "gauge covariant" version of a gauge theory accounts for this effect by introducing a gauge field(in mathematical language, an Ehresmann connection) and formulating all rates of change in terms of the covariant derivative with respect to this connection. The gauge field becomes an essential part of the description of a mathematical configuration. A configuration in which the gauge field can be eliminated by a gauge transformation has the property that its field strength (in mathematical language, its curvature) is zero everywhere; a gauge theory is not limited to these configurations. In other words, the distinguishing characteristic of a gauge theory is that the gauge field does not merely compensate for a poor choice of coordinate system; there is generally no gauge transformation that makes the gauge field vanish.

When analyzing the dynamics of a gauge theory, the gauge field must be treated as a dynamical variable, similarly to other objects in the description of a physical situation. In addition to itsinteraction with other objects via the covariant derivative, the gauge field typically contributes energyin the form of a "self-energy" term. One can obtain the equations for the gauge theory by:

  • starting from a naïve ansatz without the gauge field (in which the derivatives appear in a "bare" form);
  • listing those global symmetries of the theory that can be characterized by a continuous parameter (generally an abstract equivalent of a rotation angle);
  • computing the correction terms that result from allowing the symmetry parameter to vary from place to place; and
  • reinterpreting these correction terms as couplings to one or more gauge fields, and giving these fields appropriate self-energy terms and dynamical behavior.

This is the sense in which a gauge theory "extends" a global symmetry to a local symmetry, and closely resembles the historical development of the gauge theory of gravity known as general relativity.

[edit]Physical experiments

Gauge theories are used to model the results of physical experiments, essentially by:

  • limiting the universe of possible configurations to those consistent with the information used to set up the experiment, and then
  • computing the probability distribution of the possible outcomes that the experiment is designed to measure.

The mathematical descriptions of the "setup information" and the "possible measurement outcomes" (loosely speaking, the "boundary conditions" of the experiment) are generally not expressible without reference to a particular coordinate system, including a choice of gauge. (If nothing else, one assumes that the experiment has been adequately isolated from "external" influence, which is itself a gauge-dependent statement.) Mishandling gauge dependence in boundary conditions is a frequent source of anomalies in gauge theory calculations, and gauge theories can be broadly classified by their approaches to anomaly avoidance.

[edit]Continuum theories

The two gauge theories mentioned above (continuum electrodynamics and general relativity) are examples of continuum field theories. The techniques of calculation in a continuum theory implicitly assume that:

  • given a completely fixed choice of gauge, the boundary conditions of an individual configuration can in principle be completely described;
  • given a completely fixed gauge and a complete set of boundary conditions, the principle of least action determines a unique mathematical configuration (and therefore a unique physical situation) consistent with these bounds;
  • the likelihood of possible measurement outcomes can be determined by:
    • establishing a probability distribution over all physical situations determined by boundary conditions that are consistent with the setup information,
    • establishing a probability distribution of measurement outcomes for each possible physical situation, and
    • convolving these two probability distributions to get a distribution of possible measurement outcomes consistent with the setup information; and
  • fixing the gauge introduces no anomalies in the calculation, due either to gauge dependence in describing partial information about boundary conditions or to incompleteness of the theory.

These assumptions are close enough to valid across a wide range of energy scales and experimental conditions, to allow these theories to make accurate predictions about almost all of the phenomena encountered in daily life, from light, heat, and electricity to eclipses and spaceflight. They fail only at the smallest and largest scales (due to omissions in the theories themselves) and when the mathematical techniques themselves break down (most notably in the case of turbulence and other chaotic phenomena).

[edit]Quantum field theories

Other than these "classical" continuum field theories, the most widely known gauge theories arequantum field theories, including quantum electrodynamics and the Standard Model of elementary particle physics. The starting point of a quantum field theory is much like that of its continuum analog: a gauge-covariant action integral which characterizes "allowable" physical situations according to theprinciple of least action. However, continuum and quantum theories differ significantly in how they handle the excess degrees of freedom represented by gauge transformations. Continuum theories, and most pedagogical treatments of the simplest quantum field theories, use a gauge fixingprescription to reduce the orbit of mathematical configurations that represent a given physical situation to a smaller orbit related by a smaller gauge group (the global symmetry group, or perhaps even the trivial group).

More sophisticated quantum field theories, in particular those which involve a non-abelian gauge group, break the gauge symmetry within the techniques of perturbation theory by introducing additional fields (the Faddeev–Popov ghosts) and counterterms motivated by anomaly cancellation, in an approach known as BRST quantization. While these concerns are in one sense highly technical, they are also closely related to the nature of measurement, the limits on knowledge of a physical situation, and the interactions between incompletely specified experimental conditions and incompletely understood physical theory. The mathematical techniques that have been developed in order to make gauge theories tractable have found many other applications, from solid-state physicsand crystallography to low-dimensional topology.

[edit]Classical gauge theory

[edit]Classical electromagnetism

Historically, the first example of gauge symmetry to be discovered was classical electromagnetism. In electrostatics, one can either discuss the electric field, E, or its corresponding electric potentialV. Knowledge of one makes it possible to find the other, except that potentials differing by a constant, V \rightarrow V+C, correspond to the same electric field. This is because the electric field relates tochanges in the potential from one point in space to another, and the constant C would cancel out when subtracting to find the change in potential. In terms of vector calculus, the electric field is thegradient of the potential, \mathbf{E}=-\nabla V. Generalizing from static electricity to electromagnetism, we have a second potential, the vector potential A, with

\mathbf{E} = - \nabla V - \frac{\partial \mathbf{A}}{\partial t}
\mathbf{B} =  \nabla \times \mathbf{A}\ .

The general gauge transformations now become not just V \rightarrow V+C but

\mathbf{A} \rightarrow \mathbf{A}+\nabla f
V \rightarrow V-\frac{\partial f}{\partial t}\ ,

where f is any function that depends on position and time. The fields remain the same under the gauge transformation, and therefore Maxwell's equations are still satisfied. That is, Maxwell's equations have a gauge symmetry.

[edit]An example: Scalar O(n) gauge theory

The remainder of this section requires some familiarity with classical or quantum field theory, and the use of Lagrangians.
Definitions in this section: gauge groupgauge fieldinteraction Lagrangiangauge boson.

The following illustrates how local gauge invariance can be "motivated" heuristically starting from global symmetry properties, and how it leads to an interaction between fields which were originally non-interacting.

Consider a set of n non-interacting scalar fields, with equal masses m. This system is described by an action which is the sum of the (usual) action for each scalar field \varphi_i

 \mathcal{S} = \int \, \mathrm{d}^4 x \sum_{i=1}^n \left[ \frac{1}{2} \partial_\mu \varphi_i \partial^\mu \varphi_i - \frac{1}{2}m^2 \varphi_i^2 \right].

The Lagrangian (density) can be compactly written as

\ \mathcal{L} = \frac{1}{2} (\partial_\mu \Phi)^T \partial^\mu \Phi - \frac{1}{2}m^2 \Phi^T \Phi

by introducing a vector of fields

\ \Phi = ( \varphi_1, \varphi_2,\ldots, \varphi_n)^T .

The term \partial_\mu is Einstein notation for the partial derivative of \Phi in each of the four dimensions. It is now transparent that the Lagrangian is invariant under the transformation

\ \Phi \mapsto \Phi^' = G \Phi

whenever G is a constant matrix belonging to the n-by-n orthogonal group O(n). This is seen to preserve the Lagrangian since the derivative of \Phi will transform identically to \Phi and both quantities appear inside dot products in the Lagrangian (orthogonal transformations preserve the dot product).

\ (\partial_\mu \Phi) \mapsto (\partial_\mu \Phi)^' = G \partial_\mu \Phi

This characterizes the global symmetry of this particular Lagrangian, and the symmetry group is often called the gauge group; the mathematical term is structure group, especially in the theory ofG-structures. Incidentally, Noether's theorem implies that invariance under this group of transformations leads to the conservation of the current

\ J^{a}_{\mu} = i\partial_\mu \Phi^T T^{a} \Phi

where the Ta matrices are generators of the SO(n) group. There is one conserved current for every generator.

Now, demanding that this Lagrangian should have local O(n)-invariance requires that the G matrices (which were earlier constant) should be allowed to become functions of the space-time coordinatesx.

Unfortunately, the G matrices do not "pass through" the derivatives, when G = G(x),

\ \partial_\mu (G \Phi) \neq G (\partial_\mu \Phi)

The failure of the derivative to commute with "G" introduces an additional term (in keeping with the product rule) which spoils the invariance of the Lagrangian. In order to rectify this we define a new derivative operator such that the derivative of \Phi will again transform identically with \Phi

\ (D_\mu \Phi)^' = G D_\mu \Phi.

This new "derivative" is called a covariant derivative and takes the form

\ D_\mu = \partial_\mu + g A_\mu

Where g is called the coupling constant – a quantity defining the strength of an interaction. After a simple calculation we can see that the gauge field A(x) must transform as follows

\ A^'_\mu = G A_\mu G^{-1} - \frac{1}{g} (\partial_\mu G)G^{-1}

The gauge field is an element of the Lie algebra, and can therefore be expanded as

\ A_{\mu} =  \sum_a A_{\mu}^a T^a

There are therefore as many gauge fields as there are generators of the Lie algebra.

Finally, we now have a locally gauge invariant Lagrangian

\ \mathcal{L}_\mathrm{loc} = \frac{1}{2} (D_\mu \Phi)^T D^\mu \Phi -\frac{1}{2}m^2 \Phi^T \Phi.

Pauli calls gauge transformation of the first type to the one applied to fields as \Phi, while the compensating transformation in A is said to be a gauge transformation of the second type.

Feynman diagram of scalar bosons interacting via a gauge boson

The difference between this Lagrangian and the originalglobally gauge-invariant Lagrangian is seen to be theinteraction Lagrangian

\ \mathcal{L}_\mathrm{int} = \frac{g}{2} \Phi^T A_{\mu}^T \partial^\mu \Phi + \frac{g}{2}  (\partial_\mu \Phi)^T A^{\mu} \Phi + \frac{g^2}{2} (A_\mu \Phi)^T A^\mu \Phi.

This term introduces interactions between the n scalar fields just as a consequence of the demand for local gauge invariance. However, to make this interaction physical and not completely arbitrary, the mediator A(x) needs to propagate in space. That is dealt with in the next section by adding yet another term, \mathcal{L}_{\mathrm{gf}}, to the Lagrangian. In the quantized version of the obtained classical field theory, the quanta of the gauge field A(x) are called gauge bosons. The interpretation of the interaction Lagrangian in quantum field theory is of scalar bosons interacting by the exchange of these gauge bosons.

[edit]The Yang–Mills Lagrangian for the gauge field

The picture of a classical gauge theory developed in the previous section is almost complete, except for the fact that to define the covariant derivatives D, one needs to know the value of the gauge field A(x) at all space-time points. Instead of manually specifying the values of this field, it can be given as the solution to a field equation. Further requiring that the Lagrangian which generates this field equation is locally gauge invariant as well, one possible form for the gauge field Lagrangian is (conventionally) written as

\ \mathcal{L}_\mathrm{gf} = - \frac{1}{2} \operatorname{Tr}(F^{\mu \nu} F_{\mu \nu})

with

\ F_{\mu \nu} = \frac{1}{ig}[D_\mu, D_\nu]

and the trace being taken over the vector space of the fields. This is called the Yang–Mills action. Other gauge invariant actions also exist (e.g. nonlinear electrodynamicsBorn–Infeld actionChern–Simons modeltheta term etc.).

Note that in this Lagrangian term there is no field whose transformation counterweighs the one of A. Invariance of this term under gauge transformations is a particular case of a priori classical (geometrical) symmetry. This symmetry must be restricted in order to perform quantization, the procedure being denominated gauge fixing, but even after restriction, gauge transformations may be possible.[3]

The complete Lagrangian for the gauge theory is now

\ \mathcal{L} = \mathcal{L}_\mathrm{loc} + \mathcal{L}_\mathrm{gf} = \mathcal{L}_\mathrm{global} + \mathcal{L}_\mathrm{int} + \mathcal{L}_\mathrm{gf}

[edit]An example: Electrodynamics

As a simple application of the formalism developed in the previous sections, consider the case ofelectrodynamics, with only the electron field. The bare-bones action which generates the electron field's Dirac equation is

 \mathcal{S} = \int \bar\psi(i \hbar c \, \gamma^\mu \partial_\mu - m c^2 ) \psi \, \mathrm{d}^4x.

The global symmetry for this system is

\ \psi \mapsto e^{i \theta} \psi.

The gauge group here is U(1), just the phase angle of the field, with a constant θ.

"Local"ising this symmetry implies the replacement of θ by θ(x).

An appropriate covariant derivative is then

\ D_\mu = \partial_\mu - i \frac{e}{\hbar} A_\mu.

Identifying the "charge" e with the usual electric charge (this is the origin of the usage of the term in gauge theories), and the gauge field A(x) with the four-vector potential of electromagnetic fieldresults in an interaction Lagrangian

\ \mathcal{L}_\mathrm{int} = \frac{e}{\hbar}\bar\psi(x) \gamma^\mu \psi(x) A_{\mu}(x) = J^{\mu}(x)  A_{\mu}(x).

where J^{\mu}(x) is the usual four vector electric current density. The gauge principle is therefore seen to naturally introduce the so-called minimal coupling of the electromagnetic field to the electron field.

Adding a Lagrangian for the gauge field A_{\mu}(x) in terms of the field strength tensor exactly as in electrodynamics, one obtains the Lagrangian which is used as the starting point in quantum electrodynamics.

\ \mathcal{L}_{\mathrm{QED}} = \bar\psi(i\hbar c \, \gamma^\mu D_\mu - m c^2 )\psi - \frac{1}{4 \mu_0}F_{\mu\nu}F^{\mu\nu}.
See also: Dirac equationMaxwell's equationsQuantum electrodynamics

[edit]Mathematical formalism

Gauge theories are usually discussed in the language of differential geometry. Mathematically, agauge is just a choice of a (local) section of some principal bundle. A gauge transformation is just a transformation between two such sections.

Although gauge theory is dominated by the study of connections (primarily because it's mainly studied by high-energy physicists), the idea of a connection is not central to gauge theory in general. In fact, a result in general gauge theory shows that affine representations (i.e. affine modules) of the gauge transformations can be classified as sections of a jet bundle satisfying certain properties. There are representations which transform covariantly pointwise (called by physicists gauge transformations of the first kind), representations which transform as a connection form (called by physicists gauge transformations of the second kind, an affine representation) and other more general representations, such as the B field in BF theory. There are more general nonlinear representations (realizations), but are extremely complicated. Still, nonlinear sigma models transform nonlinearly, so there are applications.

If there is a principal bundle P whose base space is space or spacetime and structure group is a Lie group, then the sections of P form a principal homogeneous space of the group of gauge transformations.

Connections (gauge connection) define this principal bundle, yielding a covariant derivative ∇ in each associated vector bundle. If a local frame is chosen (a local basis of sections), then this covariant derivative is represented by the connection form A, a Lie algebra-valued 1-form which is called the gauge potential in physics. This is evidently not an intrinsic but a frame-dependent quantity. The curvature form F is constructed from a connection form, a Lie algebra-valued 2-formwhich is an intrinsic quantity, by

\bold{F}=\mathrm{d}\bold{A}+\bold{A}\wedge\bold{A}

where d stands for the exterior derivative and \wedge stands for the wedge product. (\bold{A} is an element of the vector space spanned by the generators T^{a}, and so the components of \bold{A} do not commute with one another. Hence the wedge product \bold{A}\wedge\bold{A} does not vanish.)

Infinitesimal gauge transformations form a Lie algebra, which is characterized by a smooth Lie algebra valued scalar, ε. Under such an infinitesimal gauge transformation,

\delta_\varepsilon \bold{A}=[\varepsilon,\bold{A}]-\mathrm{d}\varepsilon

where [\cdot,\cdot] is the Lie bracket.

One nice thing is that if \delta_\varepsilon X=\varepsilon X, then \delta_\varepsilon DX=\varepsilon DX where D is the covariant derivative

DX\ \stackrel{\mathrm{def}}{=}\  \mathrm{d}X+\bold{A}X.

Also, \delta_\varepsilon \bold{F}=\varepsilon \bold{F}, which means \bold{F} transforms covariantly.

Not all gauge transformations can be generated by infinitesimal gauge transformations in general. An example is when the base manifold is a compact manifold without boundary such that the homotopyclass of mappings from that manifold to the Lie group is nontrivial. See instanton for an example.

The Yang–Mills action is now given by

\frac{1}{4g^2}\int \operatorname{Tr}[*F\wedge F]

where * stands for the Hodge dual and the integral is defined as in differential geometry.

A quantity which is gauge-invariant i.e. invariant under gauge transformations is the Wilson loop, which is defined over any closed path, γ, as follows:

\chi^{(\rho)}\left(\mathcal{P}\left\{e^{\int_\gamma A}\right\}\right)

where χ is the character of a complex representation ρ and \mathcal{P} represents the path-ordered operator.

[edit]Quantization of gauge theories

Gauge theories may be quantized by specialization of methods which are applicable to any quantum field theory. However, because of the subtleties imposed by the gauge constraints (see section on Mathematical formalism, above) there are many technical problems to be solved which do not arise in other field theories. At the same time, the richer structure of gauge theories allow simplification of some computations: for example Ward identities connect different renormalization constants.

[edit]Methods and aims

The first gauge theory to be quantized was quantum electrodynamics (QED). The first methods developed for this involved gauge fixing and then applying canonical quantization. The Gupta–Bleulermethod was also developed to handle this problem. Non-abelian gauge theories are now handled by a variety of means. Methods for quantization are covered in the article on quantization.

The main point to quantization is to be able to compute quantum amplitudes for various processes allowed by the theory. Technically, they reduce to the computations of certain correlation functions in the vacuum state. This involves a renormalization of the theory.

When the running coupling of the theory is small enough, then all required quantities may be computed in perturbation theory. Quantization schemes intended to simplify such computations (such as canonical quantization) may be called perturbative quantization schemes. At present some of these methods lead to the most precise experimental tests of gauge theories.

However, in most gauge theories, there are many interesting questions which are non-perturbative. Quantization schemes suited to these problems (such as lattice gauge theory) may be called non-perturbative quantization schemes. Precise computations in such schemes often requiresupercomputing, and are therefore less well-developed currently than other schemes.

[edit]Anomalies

Some of the symmetries of the classical theory are then seen not to hold in the quantum theory — a phenomenon called an anomaly. Among the most well known are:

[edit]Pure gauge

A pure gauge is the set of field configurations obtained by a gauge transformation on the null field configuration. So it is a particular "gauge orbit" in the field configuration's space.

In the abelian case, where A_\mu (x) \rightarrow A'_\mu(x) = A_\mu(x)+ \partial_\mu f(x), the pure gauge is the set of field configurations A'_\mu(x) = \partial_\mu f(x) for all f(x).

[edit]See also

[edit]References

  1. ^ Wolfgang Pauli (1941) "Relativistic Field Theories of Elementary Particles,Rev. Mod. Phys. 13: 203–32.
  2. ^ Pickering, A. (1984). Constructing QuarksUniversity of Chicago PressISBN 0-226-66799-5.
  3. ^ Sakurai, Advanced Quantum Mechanics, sect 1–4

[edit]Bibliography

General readers
  • Schumm, Bruce (2004) Deep Down Things. Johns Hopkins University Press. Esp. chpt. 8. A serious attempt by a physicist to explain gauge theory and the Standard Model with little formal mathematics.
Texts
Articles

[edit]External links


2012/5/25 王雄 <wangxiong8686@gmail.com>

Spacetime symmetries

Main article: Spacetime symmetries

Fields are often classified by their behaviour under transformations of spacetime. The terms used in this classification are —

  • scalar fields (such as temperature) whose values are given by a single variable at each point of space. This value does not change under transformations of space.
  • vector fields (such as the magnitude and direction of the force at each point in a magnetic field) which are specified by attaching a vector to each point of space. The components of this vector transform between themselves as usual under rotations in space.
  • tensor fields, (such as the stress tensor of a crystal) specified by a tensor at each point of space. The components of the tensor transform between themselves as usual under rotations in space.
  • spinor fields are useful in quantum field theory.

[edit]Internal symmetries

Main article: Gauge symmetry

Fields may have internal symmetries in addition to spacetime symmetries. For example, in many situations one needs fields which are a list of space-time scalars: (φ12...φN). For example, in weather prediction these may be temperature, pressure, humidity, etc. In particle physics, the colorsymmetry of the interaction of quarks is an example of an internal symmetry of the strong interaction, as is the isospin or flavour symmetry.

If there is a symmetry of the problem, not involving spacetime, under which these components transform into each other, then this set of symmetries is called an internal symmetry. One may also make a classification of the charges of the fields under internal symmetries.

[edit]


2012/5/25 王雄 <wangxiong8686@gmail.com>

External symmetry in general relativity

Ion I. Cotaescu (The West University of Timişoara, Romania)
(Submitted on 31 May 2000)
We propose a generalization of the isometry transformations to the geometric context of the field theories with spin where the local frames are explicitly involved. We define the external symmetry transformations as isometries combined with suitable tetrad gauge transformations and we show that these form a group which is locally isomorphic with the isometry one. We point out that the symmetry transformations that leave invariant the equations of the fields with spin have generators with specific spin terms which represent new physical observables. The examples we present are the generators of the central symmetry and those of the maximal symmetries of the de Sitter and anti-de Sitter spacetimes derived in different tetrad gauge fixings. 
Pacs: 04.20.Cv, 04.62.+v, 11.30.-j
Comments: 25 pages, Latex
Subjects: General Relativity and Quantum Cosmology (gr-qc)
Journal reference:J.Phys.A33:9177-9192,2000
DOI: 10.1088/0305-4470/33/50/304
Cite as:arXiv:gr-qc/0005135v1


Groupoids: Unifying Internal and External Symmetry

作者:A Weinstein - 1996 - 被引用次数:170 - 相关文章
Groupoids: Unifying Internal and ExternalSymmetry. A Tour through Some Examples. Alan Weinstein. 744. NOTICES OF THE AMS. VOLUME 43, NUMBER 7 ...



[PDF] 

INTERNAL, EXTERNAL AND GENERALIZED SYMMETRIES

文件格式: PDF/Adobe Acrobat - 快速查看
作者:IM Anderson - 1990 - 被引用次数:54 - 相关文章
ones which do not come from classical "externalsymmetries... external symmetry of a system of differential equations gives rise to an internal symmetry ...


About the Origin of the Division between Internal and External Symmetries in Quantum Field Theory

(Submitted on 17 Oct 2009)
It is made the attempt to explain why there exists a division between internal symmetries referring to quantum numbers and external symmetries referring to space-time within the description of relativistic quantum field theories. It is hold the attitude that the symmetries of quantum theory are the origin of both sorts of symmetries in nature. Since all quantum states can be represented as a tensor product of two dimensional quantum objects, called ur objects, which can be interpreted as quantum bits of information, described by spinors reflecting already the symmetry properties of space-time, it seems to be possible to justify such an attitude. According to this, space-time symmetries can be considered as a consequence of a representation of quantum states by quantum bits. Internal symmetries are assumed to refer to relations of such fundamental objects, which are contained within the state of one single particle, with respect to each other. In this sense the existence of space-time symmetries, the existence of internal symmetries and their division could obtain a derivation from quantum theory interpreted as a theory of information.
Comments:5 pages
Subjects:General Physics (physics.gen-ph)
Cite as: arXiv:0910.3303v1 [physics.gen-ph]